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Linköping University, Linköping, Sweden
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ABSTRACT
The most widely used task fMRI analyses use paramet-

ric methods that depend on a variety of assumptions. While
individual aspects of these fMRI models have been evalu-
ated, they have not been evaluated in a comprehensive man-
ner with empirical data. In this work, a total of 2 million
random task fMRI group analyses have been performed using
resting state fMRI data, to compute empirical familywise er-
ror rates for the software packages SPM, FSL and AFNI, as
well as a standard non-parametric permutation method. While
there is some variation, for a nominal familywise error rate of
5% the parametric statistical methods are shown to be conser-
vative for voxel-wise inference and invalid for cluster-wise
inference; in particular, cluster size inference with a clus-
ter defining threshold of p = 0.01 generates familywise error
rates up to 60%. We conduct a number of follow up anal-
yses and investigations that suggest the cause of the invalid
cluster inferences is spatial auto correlation functions that do
not follow the assumed Gaussian shape. By comparison, the
non-parametric permutation test, which is based on a small
number of assumptions, is found to produce valid results for
voxel as well as cluster wise inference. Using real task data,
we compare the results between one parametric method and
the permutation test, and find stark differences in the conclu-
sions drawn between the two using cluster inference. These
findings speak to the need of validating the statistical methods
being used in the neuroimaging field.

1. INTRODUCTION

Functional magnetic resonance imaging (fMRI) [1, 2] has
since its beginning some 20 years ago been a popular tool for
increasing the knowledge about the human brain, with some
28,000 published papers according to PubMed (fMRI in the

title or abstract). The first fMRI experiments consisted of
simple motor tasks, while more recent examples involve rest-
ing state fMRI to study (dynamic) brain connectivity [3, 4].
Despite the popularity of fMRI as a tool for studying brain
function, the statistical methods used have rarely been vali-
dated using real data, likely due to the high cost of fMRI data
collection. Validations have instead mainly been performed
using simulated data [5], but it is obviously very hard to
simulate the complex spatiotemporal noise that arises from a
living human subject in an MR scanner.

Through the introduction of international data sharing ini-
tiatives in the neuroimaging field [6, 7, 8, 9, 10, 11, 12], it has
become possible to evaluate the statistical methods using real
data. Scarpazza et al. [13] for example used freely available
anatomical images from 396 healthy controls [6] to investi-
gate the validity of parametric statistical methods for voxel
based morphometry [14], when comparing a single subject
to a group. Silver et al. [15] instead used image and genotype
data from 181 subjects in the Alzheimer’s disease neuroimag-
ing initiative (ADNI) [10, 11]. The data were used to evaluate
statistical methods common in imaging genetics, where the
goal is to find genes that can explain variation in brain struc-
ture or function. Another example of the use of open data
is our previous work [16], where we investigated the valid-
ity of the SPM software for single subject fMRI analysis. A
total of 1484 resting state fMRI data sets from the 1000 func-
tional connectomes project [6] were used as null data, to test
how likely it is to find significant brain activity when a sub-
ject has not performed any specific task in the MR scanner.
The main conclusion was that the noise model in SPM is too
simple, yielding a high degree of false positives (up to 70%
incidence of any false positives, compared to the expected 5%
under familywise error control). It was, however, not clear if
these problems would propagate to group studies, where inter-
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subject variability in a per-subject response is less complex
than intrasubject time series data. Another unanswered ques-
tion was the statistical validity of other fMRI software pack-
ages. Here, we therefore present a statistical evaluation of the
three most common fMRI software packages (SPM [17, 18],
FSL [19], AFNI [20]) for group inference. Specifically, we
evaluate the packages in their entirety, submitting the null data
to recommended suite of preprocessing steps integrated into
each package.

The main idea of this study is the same for our previous
one [16]; to analyze null data and simply count the number
analyses that give rise to any false positives. Since two groups
of subjects are randomly drawn from a group of healthy con-
trols, the null hypothesis of no group difference in brain ac-
tivation is true. By performing many random group compar-
isons, using only healthy controls of similar age, it is possible
to compute the empirical false positive rate of a two sample
t-test. A similar approach has previously been used to in-
vestigate the validity of parametric statistics for voxel based
morphometry [14, 21]. Using resting state fMRI data, which
should not contain specific forms of brain activity, it is also
possible to compute the empirical false positive rate of a one
sample t-test (group activation).

Briefly, our results show that the parametric statistical
methods used in the three most common fMRI software
packages are conservative for voxel-wise inference with fam-
ilywise error control, where each voxel in a volume is inde-
pendently tested for significance. However, the parametric
methods can give a very high degree of false positives (up
to 60%, compared to the nominal 5%) for cluster-wise infer-
ence [22, 23, 24], where groups of neighboring voxels are
tested simultaneously (to increase the statistical power). By
comparison, the non-parametric permutation test [25, 26] is
found to produce valid results for both voxel- and cluster-wise
inference.

2. RESULTS

A total of 1,920,000 random group analyses were performed
to compute the empirical false positive rates of SPM, FSL
and AFNI (1,000 random analyses repeated for 128 parameter
combinations, three thresholding approaches and five func-
tions in the three softwares). The tested parameter combi-
nations, given in Table 1, are common in the fMRI field ac-
cording to a recent review [27]. The following five software
tools were tested; SPM OLS, FSL OLS, FSL FLAME1, AFNI
OLS (3dttest++) and AFNI 3dMEMA. The OLS (ordinary
least squares) functions only use the beta estimates from each
subject in the group analysis, while FLAME1 in FSL and
3dMEMA in AFNI also consider the variance of the beta esti-
mates. To compare the parametric statistical methods used by
SPM, FSL and AFNI to a non-parametric method, all analy-
ses were also performed using a permutation test [25, 26, 28].

Resting state fMRI data from 396 healthy controls, down-

loaded from the 1000 functional connectomes project [6],
were used for all of the analyses. Resting state data should
not contain systematic changes in brain activity, but our pre-
vious work [16] showed that the used (pretended) activity
paradigm can have a large impact on the degree of false pos-
itives. Several different activity paradigms were therefore
used; two block based (B1, B2) and two event related (E1,
E2), see Table 2.

Figures 1 - 3 present the main findings of the study, show-
ing cluster-wise (Figure 1, two-sample t-test; Figure 2, one-
sample t-test) and voxel-wise (Figure 3) results for a total
sample size of 20 (Figures 4 - 6 show corresponding results
for a total sample size of 40). In broad summary, parametric
software’s familywise error (FWE) rates for cluster-wise in-
ference far exceed their nominal 5% level, while parametric
voxel-wise inferences are valid but often conservative, often
falling below 5%. Permutation false positives are controlled
at a nominal 5% except for cluster-wise inference with a one
sample t-test, mainly with the Beijing data with designs B1
and E1. The impact of cluster defining threshold (CDT) was
appreciable for the parametric methods, with CDT p = 0.001
having much better FWE control than CDT p = 0.01. Among
the parametric software packages, FSL’s FLAME1 cluster-
wise inference stood out as having much lower FWE, often
being valid (under 5%). But with cluster-wise CDT p = 0.001,
and voxel-wise inference, FLAME1 was often very conserva-
tive.
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Table 1: Parameters tested for the different fMRI software packages, giving a total of 128 parameter combinations and 3
thresholding approaches. One thousand group analyses were performed for each parameter combination.

Parameter Values used
fMRI data Beijing (198 subjects), Cambridge (198 subjects)

Activity paradigm Block (B1, B2), event (E1, E2)
Smoothing 4, 6, 8, 10 mm FWHM

Analysis type One sample t-test (group activation), two sample t-test (group difference)
Number of subjects 20, 40

Inference level Voxel, cluster
Cluster defining threshold p = 0.01 (z = 2.3), p = 0.001 (z = 3.1)

Table 2: Length of activity and rest periods for the used (pretended) activity paradigms, R stands for randomized. Number of
periods

Paradigm Activity duration (s) Rest duration (s)
B1 10 10
B2 30 30
E1 2 6
E2 1-4 (R) 3-6 (R)
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(a) (b)

(c) (d)

Fig. 1: Results for two sample t-test and cluster-wise inference, showing estimated familywise error rates for 4-10 mm of
smoothing and four different activity paradigms (B1, B2, E1, E2), for SPM, FSL, AFNI and a permutation test. These results
are for a group size of 10 (giving a total of 20 subjects). Each statistic map was first thresholded using a cluster defining
threshold (CDT) (p = 0.01 or p = 0.001, uncorrected for multiple comparisons), and the surviving clusters were then compared
to a FWE-corrected cluster extent threshold, pFWE = 0.05. The estimated familywise error rates are simply the number of
analyses with any significant group differences divided by the number of analyses (1000). Note that the default CDT is p =
0.001 in SPM and p = 0.01 in FSL (AFNI does not have a default setting). Also note that the default amount of smoothing is 8
mm in SPM, 5 mm in FSL and 4 mm in AFNI. (a) results for Cambridge data and a CDT of p = 0.01 (b) results for Cambridge
data and a CDT of p = 0.001 (c) results for Beijing data and a CDT of p = 0.01 (d) results for Beijing data and a CDT of p =
0.001.
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(a) (b)

(c) (d)

Fig. 2: Results for one sample t-test and cluster-wise inference, showing estimated familywise error rates for 4-10 mm of
smoothing and four different activity paradigms (B1, B2, E1, E2), for SPM, FSL, AFNI and a permutation test. These results
are for a group size of 20. Each statistic map was first thresholded using a cluster defining threshold (CDT) (p = 0.01 or p
= 0.001, uncorrected for multiple comparisons), and the surviving clusters were then compared to a FWE-corrected cluster
extent threshold, pFWE = 0.05. The estimated familywise error rates are simply the number of analyses with any significant
group activations divided by the number of analyses (1000). Note that the default CDT is p = 0.001 in SPM and p = 0.01 in
FSL (AFNI does not have a default setting). Also note that the default amount of smoothing is 8 mm in SPM, 5 mm in FSL and
4 mm in AFNI. (a) results for Cambridge data and a CDT of p = 0.01 (b) results for Cambridge data and a CDT of p = 0.001
(c) results for Beijing data and a CDT of p = 0.01 (d) results for Beijing data and a CDT of p = 0.001.
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(a) (b)

(c) (d)

Fig. 3: Results for two-sample (left) and one-sample (right) t-test and voxel-wise inference, showing estimated familywise
error rates for 4-10 mm of smoothing and four different activity paradigms (B1, B2, E1, E2), for SPM, FSL, AFNI and a
permutation test. Each statistic map was thresholded using a FWE-corrected voxel-wise threshold of pFWE = 0.05. The
estimated familywise error rates are simply the number of analyses with any significant results divided by the number of
analyses (1000). Note that the default amount of smoothing is 8 mm in SPM, 5 mm in FSL and 4 mm in AFNI. (a) results for two
sample t-tests using Cambridge data (b) results for one sample t-tests using Cambridge data (c) results for two sample t-tests
using Beijing data (d) results for one sample t-tests using Beijing data.
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(a) (b)

(c) (d)

Fig. 4: Results for two-sample t-test and cluster-wise inference, showing estimated familywise error rates for 4-10 mm of
smoothing and four different activity paradigms (B1, B2, E1, E2), for SPM, FSL, AFNI and a permutation test. These results
are for a group size of 20 (giving a total of 40 subjects). Each statistic map was first thresholded using a cluster defining
threshold (CDT) (p = 0.01 or p = 0.001, uncorrected for multiple comparisons), and the surviving clusters were then compared
to a FWE-corrected cluster extent threshold, pFWE = 0.05. The estimated familywise error rates are simply the number
analyses with any significant group differences divided by the number of analyses (1000). Note that the default CDT is p =
0.001 in SPM and p = 0.01 in FSL (AFNI does not have a default setting). Also note that the default amount of smoothing is 8
mm in SPM, 5 mm in FSL and 4 mm in AFNI. (a) results for Cambridge data and a CDT of p = 0.01 (b) results for Cambridge
data and a CDT of p = 0.001 (c) results for Beijing data and a CDT of p = 0.01 (d) results for Beijing data and a CDT of p =
0.001.
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(a) (b)

(c) (d)

Fig. 5: Results for one-sample t-test and cluster-wise inference, showing estimated familywise error rates for 4-10 mm of
smoothing and four different activity paradigms (B1, B2, E1, E2), for SPM, FSL, AFNI and a permutation test. These results
are for a group size of 40. Each statistic map was first thresholded using a cluster defining threshold (CDT) (p = 0.01 or p
= 0.001, uncorrected for multiple comparisons), and the surviving clusters were then compared to a FWE-corrected cluster
extent threshold, pFWE = 0.05. The estimated familywise error rates are simply the number of analyses with significant group
activations divided by the number of analyses (1000). Note that the default CDT is p = 0.001 in SPM and p = 0.01 in FSL
(AFNI does not have a default setting). Also note that the default amount of smoothing is 8 mm in SPM, 5 mm in FSL and 4
mm in AFNI. (a) results for Cambridge data and a CDT of p = 0.01 (b) results for Cambridge data and a CDT of p = 0.001 (c)
results for Beijing data and a CDT of p = 0.01 (d) results for Beijing data and a CDT of p = 0.001.
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(a) (b)

(c) (d)

Fig. 6: Results for two-sample (left) and one-sample (right) t-test and voxel-wise inference, showing estimated familywise error
rates for 4-10 mm of smoothing and four different activity paradigms (B1, B2, E1, E2), for SPM, FSL, AFNI and a permutation
test. These results are for 40 subjects. Each statistic map was thresholded using a FWE-corrected voxel-wise threshold of
pFWE = 0.05. The estimated familywise error rates are simply the number of analyses with any significant results divided by
the number of analyses (1000). Note that the default amount of smoothing is 8 mm in SPM, 5 mm in FSL and 4 mm in AFNI.
(a) results for two sample t-tests using Cambridge data (b) results for one sample t-tests using Cambridge data (c) results for
two sample t-tests using Beijing data (d) results for one sample t-tests using Beijing data.
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2.1. What about other common cluster thresholding ap-
proaches?

A common thresholding approach in the fMRI field is to use a
rather stringent cluster defining threshold, e.g. p = 0.001 (un-
corrected for multiple comparisons), together with an arbi-
trary cluster extent threshold of 10 voxels (equal to a volume
of 80 mm3 for a voxel size of 2 x 2 x 2 mm) [27, 29]. Such
an approach is ad-hoc, in the sense that one does not know
what the (corrected) p-value is for the combined procedure.
For this reason, 80,000 additional analyses (1,000 analyses
repeated for four levels of smoothing, four pretended activity
paradigms and five different software tools) were performed
to investigate the validity of this common thresholding ap-
proach. The additional analyses were only performed for the
Beijing data, for a two sample t-test using a total of 20 sub-
jects. The resulting familywise error rates, i.e. how likely it
is to detect at least one cluster of 10 voxels in the entire brain
when the null hypothesis is true, are given in Figure 7. Note
that the expected degree of false positives is unknown, since
the thresholding approach is ad-hoc. Also note that a cluster
extent of 3 voxels was used for AFNI, as the AFNI software
by default resamples the data to a voxel size of 3 x 3 x 3 mm
(a cluster of 3 voxels is for AFNI thereby equal to a volume of
81 mm3). The probability of finding at least one cluster with
a volume of 80 mm3, after an initial voxel-wise threshold of
p = 0.001, is 50% - 90% for all functions except FLAME1
in FSL. The common cluster thresholding approach thus cor-
responds to a corrected p-value of 0.5 - 0.9. Using an initial
voxel-wise threshold of p = 0.005 [29] is of course even more
problematic.

2.2. How close are the statistical test values compared to
the theoretical null distributions?

As a first step to understand the inaccuracies in the para-
metric methods, the test statistic values (t- or z-scores, as
generated by each package) were compared to their theoret-
ical null distributions. Figure 8 shows the histogram of all
brain voxels for 1000 group analyses (see caption for details).
The empirical and theoretical nulls are well-matched, except
for FSL’s FLAME1 which has lower variance (σ̂2 = 0.67)
than the theoretical null. This is the proximal cause of the
highly conservative results from FSL FLAME. The mixed
effects variance is composed of intra- and inter-subject vari-
ance (σ2

WTN , σ
2
BTW , respectively), and while other software

packages do not separately estimate each (SPM, FSL OLS),
FLAME estimates each and constrains σ2

BTW to be positive.
In this null data, the true effect in each subject is zero and
thus the true σ2

BTW = 0. Thus unless FLAME’s σ̂2
BWT is

correctly estimated to be 0, it can only be positively biased,
and in fact this point was raised by the original authors [30].
Additionally, FLAME1 (the currently recommended option)
uses a conservative degrees of freedom estimate in lieu of a
more accurate but slow degrees of freedom estimation used

Fig. 7: Results for two-sample t-test and ad-hoc cluster-wise
inference, showing estimated familywise error rates for 4-10
mm of smoothing and four different activity paradigms (B1,
B2, E1, E2), for SPM, FSL and AFNI. These results are for
a total of 20 subjects. Each statistic map was first thresh-
olded using a cluster defining threshold of p = 0.001 (uncor-
rected for multiple comparisons), and the surviving clusters
were then compared to a cluster extent threshold of 80 mm3.
The estimated familywise error rates are simply the number
of analyses with a significant result divided by the number of
analyses (1000).
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in FLAME2’s BIDET. These two factors are the most likely
explanation for the observed conservativeness.

2.3. What does the spatial auto correlation function look
like?

SPM and FSL depend on Gaussian random field theory (RFT)
for FWE-corrected voxel-wise and cluster-wise inference.
However, RFT cluster-wise inference depends on two addi-
tional assumptions. The first assumption is that the spatial
smoothness of the fMRI signal is constant over the brain,
and the second assumption is that the spatial auto correlation
function has a specific shape (a squared exponential) [31]. To
investigate the second assumption, the spatial auto correlation
function was estimated and averaged using 1000 group differ-
ence maps. For each group difference map and each distance
(1 - 20 mm), the spatial auto correlation was estimated along
x, y and z, by calculating the correlation between the original
difference map and a shifted version of the difference map.
The final estimate is an average of the spatial auto correlation
along x, y and z. The empirical spatial auto correlation func-
tions are given in Figure 9. A reference squared exponential
is also included, it is proportional to a Gaussian density with
σ = 5 mm, corresponding to an intrinsic smoothness of 8.3
mm (FWHM). The empirical spatial auto correlation function
is clearly far from a squared exponential; it has a much longer
tail. This may explain why the parametric methods work
rather well for a high cluster defining threshold (resulting
in small clusters) and not as well for a low cluster defining
threshold (resulting in large clusters).

2.4. How do the smoothness estimates and the cluster ex-
tent thresholds differ between SPM, FSL and AFNI?

For both voxel and cluster-wise inference, the smoothness of
the group difference map or group activation map needs to be
estimated to calculate the RESEL (resolution element) count,
a key parameter for the RFT based p-values. Group model
smoothness estimates for SPM, FSL FLAME and AFNI, for
1000 group comparisons, are given in Figure 10 (see Figure
caption for details). As the preprocessing was unique to each
package, it is difficult to make absolute comparisons between
intrinsic noise smoothness found with each tool. However,
the notably lower smoothness estimates from AFNI could be
due to AFNI’s use of first level (intrasubject) residuals instead
of second level (intersubject) residuals like SPM and FSL. A
direct comparison can be made between cluster size thresh-
olds of FSL FLAME and a non-parametric test conducted on
the FSL-preprocessed data (see Figure 11), showing the more
stringent cluster thresholds the non-parametric method uses
to control the familywise error rate.

2.5. Where are the false clusters located in the brain?

To investigate if the false clusters appear randomly in the
brain, all significant clusters (p < 0.05, corrected) were saved
as binary maps and summed together, see Figure 13. These
maps of voxel-wise cluster frequency show the areas more
and less likely to be marked as significant in a cluster-wise
analysis (see Figure caption for details). Posterior cingulate
was the most likely area to be covered by a cluster, while
white matter was least likely.

To investigate the assumption of a stationary spatial
smoothness, three gradient filters (oriented along x, y and z)
were applied to each group difference map, and the average
gradient magnitude

(√
(∇x)2 + (∇y)2 + (∇z)2

)
(rough-

ness) was calculated over all analyses (while actual analyses
use the residuals, as the null hypothesis is true we can equiv-
alently use the statistic maps). The smoothness was finally
obtained as the inverse roughness, and is given in Figure 13.
Reductions in smoothness will mean that random clusters are
smaller in size (reducing false positive rate) but also that there
are more clusters (increasing false positive rate); how these
two factors balance out are hard to predict.

Clearly, the false clusters appear in spatial patterns that
match the degree of smoothness in the group difference maps.
For SPM, FSL OLS and AFNI OLS, the degree of smoothness
is correlated with the brain tissue type; the smoothness is gen-
erally higher for gray brain tissue compared to white brain
tissue. This effect has previously been observed for VBM
data [15].

2.6. What is the difference between parametric and non-
parametric cluster-wise inference for a typical group
study?

All of the analyses to this point have been based on resting
state fMRI data, where the null hypothesis should be true.
We now use task data to address the practical question of
“How will my FWE-corrected cluster p-values change?” if
a user were to switch from a parametric to a non-parametric
method. We use four task data sets (rhyme judgment, mixed
gambles [32], living-nonliving decision with plain or mirror-
reversed text, word and object processing [33]) downloaded
from the OpenfMRI [9] homepage. The data sets were ana-
lyzed using a parametric (the OLS option in FSL’s FEAT) and
a non-parametric method (the randomise function in FSL).
The only difference between these two methods is that FSL
FEAT-OLS relies on Gaussian random field theory to calcu-
late the corrected cluster p-values, while randomise instead
uses the data itself. The resulting cluster p-values are given
in Table 3 (cluster defining threshold of p = 0.01) and Ta-
bles 4 - 5 (cluster defining threshold of p = 0.001). Figure 14
summarizes these results, plotting the ratio of FWE-corrected
p-values, non-parametric to parametric, against cluster size.
Given the previous null data evaluations showing valid non-
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(a)

(b)

(c)

Fig. 8: Empirical versus theoretical null distributions for a) SPM, b) FSL and c) AFNI. The empirical null distributions were
estimated by pooling test values over all brain voxels for 1000 random group comparisons. The test values were drawn from two
sample t-tests (10 subjects per group) using the Beijing data (analyzed with the E2 paradigm and 6 mm smoothing). Note that
the empirical null distribution for FLAME1 in FSL has a much lower variance compared (0.67) to a normal distribution with
unit variance. For this reason, the familywise error rates are much lower for FLAME in FSL, compared to the other functions.
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(a)

(b)

(c)

Fig. 9: Empirical versus theoretical spatial auto correlation functions (SACFs) for a) SPM, b) FSL and c) AFNI. The SACFs
were estimated and averaged using 1000 group difference maps. The difference maps were generated from two sample t-tests
(10 subjects per group) using the Beijing data (analyzed with the E2 paradigm and 6 mm smoothing). Note that the empirical
SACFs have a much longer tail compared to the theoretical squared exponential SACF, thereby violating one of the required
assumptions for parametric cluster-wise inference using Gaussian random field theory. Both SPM and FSL resample the fMRI
data to a resolution of 2 mm, while AFNI instead uses a resolution of 3 mm. For this reason, the SACFs are sampled differently
for AFNI.
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(a)

(b)

(c)

Fig. 12: The maps show voxel-wise incidence of clusters. Image intensity is the number of times, out of 10,000 random analyses
(200,000 for FSL FLAME, to account for fewer clusters per analysis), a cluster occured at a given voxel (CDT p = 0.01), for
a) SPM, b) FSL and c) AFNI. Each analysis is a two sample t-test (10 subjects per group) using the Beijing data, analyzed with
the E2 paradigm and 6 mm smoothing. The bright spot in the posterior cingulate corresponds to a region of high smoothness,
and suggests non-stationarity as a possible contributing factor.
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(a)

(b)

(c)

Fig. 13: Maps of inverse spatial gradient magnitude, reflecting the spatial smoothness of the statistic images, for a) SPM, b)
FSL and c) AFNI. The smoothness was estimated from 10,000 difference maps generated from two sample t-tests (10 subjects
per group) using the Beijing data (analyzed with the E2 paradigm and 6 mm smoothing). It is clear that the smoothness
varies spatially; one of the required assumptions for parametric cluster-wise inference using Gaussian random field theory is
thereby violated. Note that the bright areas (high smoothness) match the spatial maps of the false clusters; it is more likely
to find a large cluster for areas with a high smoothness. The AFNI software generally results in group difference maps with a
lower smoothness compared to SPM and FSL. A possible explanation is that AFNI uses higher order interpolation for motion
correction and spatial normalization, which leads to a lower smoothness compared to more common linear interpolation. Also
note the reduced smoothness for the iterative methods (FSL FLAME & AFNI 3dMEMA) and their corresponding non-iterative
methods (FSL OLS and AFNI OLS, respectively); the voxel-by-voxel estimation of between subject variance in the iterative
methods reduces the smoothness slightly.
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Fig. 10: Group smoothness estimates (mm full width at half
maximum) for SPM, FSL FLAME and AFNI. The smoothness
estimates originate from two sample t-tests (10 subjects per
group) using the Beijing data (analyzed with the E2 paradigm
and 6 mm smoothing). Note that AFNI estimates the group
smoothness differently compared to SPM and FSL. Also note
that AFNI uses higher order interpolation for motion cor-
rection and spatial normalization, which leads to a lower
smoothness compared to more common linear interpolation.

Fig. 11: Cluster extent thresholds (in cubic millimeters) for
SPM, FSL FLAME, AFNI and a permutation test, for a cluster
defining threshold of p = 0.01 and a familywise cluster error
rate of p = 0.05. The thresholds originate from two sample t-
tests (10 subjects per group) using the Beijing data (analyzed
with the E2 paradigm and 6 mm smoothing). Note that the
permutation threshold can only be directly compared with the
threshold from the FSL software, as first level results from
FSL were used for the non-parametric analyses.

Fig. 14: Ratio of non-parametric to parametric FWE cor-
rected p-values for cluster size inference on 4 task (non-null)
fMRI datasets, for parametric FWE p-values 0.05 ≥ p ≥
10−4. Results for two CDT are shown, p = 0.01 and p
= 0.001, and larger ratios indicate parametric p-values be-
ing smaller (more significant) than non-parametric p-values
(note the logarithmic scale on the y-axis). Clusters with a
parametric FWE p-value more significant than 10−4 are ex-
cluded because a permutation test with 5000 permutations
can only resolve p-values down to 0.0002, and such p-values
would generate large ratios inherently. These results suggest
cluster size inference with a CDT of p = 0.01 has FWE in-
flated by 2 to almost 3 orders of magnitude, and a CDT of p
= 0.001 has FWE significance inflated by up to 2 orders of
magnitude.

parametric and invalid parametric cluster size inference, we
take ratios larger than 1.0 as evidence of inflated (biased) sig-
nificance in the parametric inferences.

For a cluster defining threshold of p = 0.01 and a clus-
ter size of 400 voxels, the non-parametric cluster p-value is
approximately 10 - 100 times larger compared to the para-
metric p-value. For a cluster defining threshold of p = 0.001
and a cluster size of 100 voxels, the non-parametric cluster
p-value is approximately 1.25 - 10 times larger compared to
the parametric p-value. For contrast 1 of the word and object
processing task data set (Table 3), one cluster has a paramet-
ric p-value of 0.0182 and a non-parametric p-value of 0.249.
This matches the empirically estimated familywise error rate
of FSL OLS, according to Figure 5. These findings indicate
that the problems exist also for task based fMRI data, and not
only for resting state data.
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3. DISCUSSION

Our results clearly show that the parametric statistical meth-
ods used for group fMRI analysis with the packages SPM,
FSL and AFNI can produce FWE-corrected cluster p-values
that are erroneous, being spuriously low and inflating statisti-
cal significance. This calls into question the validity of count-
less published fMRI studies based on parametric cluster-wise
inference. It is important to stress that we have focused on
inferences corrected for multiple comparisons in each group
analysis, yet some 40% of a sample of 241 recent fMRI pa-
pers did not report correcting for multiple comparisons [27],
meaning that many group results in the fMRI literature suffer
even worse false positive rates than found here [34]. A possi-
ble explanation for the lack of multiple comparison correction
is that the correction methods are believed to be too conser-
vative, resulting in familywise error rates far below the ex-
pected 5%. However, we have found that correction methods
based on parametric assumptions can actually be very liberal
for cluster-wise inference, yielding familywise error rates of
up to 60%.

Compared to our previous work [16], the results presented
here are more important for three reasons. First, the cur-
rent study considers group analyses, while our previous study
looked at single subject analyses. Group analyses are much
more common in the fMRI field, and are essential for draw-
ing conclusions that should generalize to a population. Sec-
ond, we here investigate the validity of the three most com-
mon fMRI software packages [27], while we only considered
SPM in our previous study. Third, the non-parametric permu-
tation test gives valid results for all two sample t-tests, and for
60% of the one sample t-tests. This may be due to violations
of the stronger assumptions of the one-sided permutation test
which assumes symmetrically distributed errors, in contrast to
a two-sample permutation test that only assumes exchange-
able errors [25]. In our previous study, the permutation test
only performed well in some cases (mainly because single
subject fMRI data contain temporal auto correlation which
needs to be removed prior to permuting the volumes). For
group analyses, the brain activity of each subject can be seen
as independent, and thus justifies the permutation’s exchange-
ability assumption.

3.1. Should resting state data be used to test statistical as-
sumptions?

One possible criticism is that resting state fMRI data does not
truly compromise null data, as it may be affected by consistent
trends or transients, for example, at the start of the session.
If this was the case, the excess false positives would appear
only in certain paradigms and, in particular, least likely in
the randomized event-related (E2) design. Rather, the inflated
false positives were observed across all experiment types with
parametric cluster size inference, implying this effect cannot

be responsible.

3.2. Why is cluster-wise inference more problematic than
voxel-wise?

It is clear that the parametric statistical methods work well, if
conservatively, for voxel-wise inference, but not for cluster-
wise inference. We note that other authors have found random
field theory cluster-wise inference to be invalid in certain set-
tings under stationarity [31, 24] and non-stationarity [35, 15].
This present work, however, is the most comprehensive to
explore the typical parameters used in task fMRI for a va-
riety of software tools. Our results are also corroborated
by similar experiments for structural brain analysis (voxel
based morphometry, VBM) [13, 14, 15, 21, 36], showing
that cluster based p-values are more sensitive to the statis-
tical assumptions. For voxel-wise inference, our results are
consistent with a previous comparison between paramet-
ric and non-parametric methods for fMRI, showing that a
non-parametric permutation test results in lower significance
thresholds [15, 37].

Both SPM and FSL rely on RFT to correct for multi-
ple comparisons. For voxel-wise inference, RFT is based on
the assumption that the activity map is sufficiently smooth
(roughly, at least 3 voxel FWHM [31]), and that the spa-
tial auto correlation function (SACF) is twice-differentiable
at the origin. Further, RFT is only accurate for sufficient large
statistic values (precisely, a statistic value used as a threshold
would produce at most one peak under the null hypothesis
on average). For cluster-wise inference, RFT additionally as-
sumes a Gaussian shape of the SACF (i.e. a squared exponen-
tial covariance function), and that the spatial smoothness is
constant over the brain. The cluster defining threshold (CDT)
must also be sufficiently large, but to accomodate a differ-
ent sets of approximations. First, it must be large enough to
ensure that handles or voids in the clusters do not occur on av-
erage (which is much lower than needed for voxel-wise RFT
accuracy), ensuring that the expected Euler characteristic is
a good approximation to the (null) expected number of clus-
ters. Second, the CDT must be large enough for the (null)
distribution of cluster size to be accurate. Note that both SPM
and FSL apply cluster size results for Gaussian images to T
images after Gaussianizing the CDT, even though there are
T image results available [38]. Hayasaka and Nichols [31]
found that the proper T results did not dramatically improve
the performance of the RFT cluster size inferences.

The 3dClustSim function in AFNI also assumes a constant
spatial smoothness and a Gaussian form of the SACF (since
a Gaussian smoothing is applied to each generated noise vol-
ume). The Monte Carlo approach should be accurate for any
CDT as the other assumptions hold. As the familywise error
rates are far above the expected 5% for cluster-wise inference,
but not for voxel-wise inference, one or more of the Gaussian
SACF, the stationary SACF, or the sufficiently large CDT as-
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sumptions must be invalid. Cluster-wise inference was dis-
couraged for VBM already 15 years ago [14], due to non-
stationary spatial smoothness in the statistical maps. The non-
stationary smoothness can be modeled [35], but parametric
methods still give invalid results for VBM with low smooth-
ing and CDT [15]. In the fMRI field, however, the assumption
of a stationary spatial smoothness has not really been investi-
gated.

Figure 9 shows that the SACF is far from a squared expo-
nential. The empirical SACFs are close to a squared exponen-
tial for small distances, but the auto correlation is higher than
expected for large distances. This could be the reason why
the parametric methods work rather well for a high cluster
defining threshold (p = 0.001), and not at all for a low thresh-
old (p = 0.01). A low threshold gives large clusters with a
large radius, for which the tail of the SACF is quite important.
For a high threshold, resulting in rather small clusters with a
small radius, the tail is not as important. Also, it could sim-
ply be that the high-threshold assumption is not satisfied for
a CDT of p = 0.01. Figure 13 shows that the spatial smooth-
ness is not constant in the brain, but varies spatially. Note that
the bright areas match the spatial distribution of false clus-
ters in Figure 12; it is more likely to find a large cluster for a
high smoothness. The permutation test does not assume a spe-
cific shape of the SACF, nor does it assume a constant spatial
smoothness, nor require a high CDT. For these reasons, the
permutation test provides valid results, for two sample t-tests,
for both voxel and cluster-wise inference.

3.3. Why does AFNI’s Monte Carlo approach, with fewer
parametric assumptions, not perform better?

As can be observed in Figures 1, 2, 4 and 5, AFNI results in
familywise error rates that are high even for a cluster defin-
ing threshold of p = 0.001. There are two main factors that
explain these results.

Firstly, AFNI estimates the spatial group smoothness dif-
ferently compared to SPM and FSL. AFNI averages smooth-
ness estimates from the first level analysis, whereas SPM and
FSL estimate the group smoothness using the group residuals
from the general linear model [39]. The group smoothness
used by 3dClustSim may for this reason be too low (compared
to SPM and FSL, see Figure 10); the variation of smoothness
over subjects is not considered.

Secondly, a 15 year old bug was found in 3dClustSim
while testing the three software packages (the bug was fixed
by the AFNI group as of May 20151, during preparation of
this manuscript). The effect of the bug was an underestima-
tion of how likely it is to find a cluster of a certain size (in
other words, the p-values reported by 3dClustSim were too
low). The main idea behind the 3dClustSim function is to
generate Gaussian noise with unit variance, and then smooth
it using a Gaussian lowpass filter with a size corresponding to

1http://afni.nimh.nih.gov/pub/dist/doc/program help/3dClustSim.html

the estimated group smoothness. This procedure is repeated a
large number of times, to obtain an estimate of how common
different cluster sizes are for Gaussian noise. The smoothed
noise is rescaled back to unit variance, and 3dClustSim per-
forms the rescaling by first estimating the variance of the
smoothed noise. Due to edge effects caused by the smoothing
operation the boundary of the volume is attenuated, which
has two effects. First, the estimated variance used for stan-
dardization will be biased down, increasing the variance of
the simulated images2. Second, the attenuation will reduce
the chance that clusters will ever occur near the boundary, ef-
fectively reducing the search volume and under estimating the
severity of the multiple testing problem.

Together, the lower group smoothness and the bug in
3dClustSim resulted in cluster extent thresholds that are
much lower compared to SPM and FSL, see Figure 11, which
resulted in particularly high familywise error rates. Note that
the cluster extent thresholds for SPM, FSL and AFNI match
the degree of false positives according to Figure 1 (d). AFNI
has the lowest cluster extent thresholds, and therefore results
in a higher familywise error rate compared to SPM and FSL.
FSL has higher extent thresholds compared to SPM, and the
familywise error rates are therefore slightly lower.

The familywise error rates for AFNI will be lower with
the fixed 3dClustSim function, especially for high levels of
smoothing (for which the bug in 3dClustSim is more notice-
able). As an example of the difference between the old and
the new 3dClustSim function, the new function gives a cluster
extent threshold that is 15% higher compared to the old func-
tion (for a smoothness of 8 mm). These findings are rather
alarming, as 3dClustSim is one of the most popular choices
for multiple comparison correction [27].

3.4. Which parameters affect the familywise error rate
for cluster-wise inference?

According to Figures 1, 2, 4 and 5, the cluster defining thresh-
old is the most important parameter for SPM, FSL and AFNI;
using a more liberal threshold increases the degree of false
positives. This result is consistent with previous work [15, 24,
40]. However, the permutation test is completely unaffected
by changes of this parameter. According to a recent review
looking at 484 fMRI studies [24], the used cluster defining
threshold varies greatly between the three software packages
(mainly due to different default settings). For SPM, p = 0.001
is the default and most common threshold (used in about 70%
of the studies), followed by 20% for p = 0.005 and 5% for
p = 0.01. For FSL, p = 0.01 is the default and most com-
mon choice (65% of the studies), followed by 20% for p =
0.001 and 10% greater than p = 0.01. The AFNI software

2The variance of independent unit variance noise after convolution is
equal to the sum of squares of the smoothing kernel; this result is not used
by 3dClustSim, which instead uses the empirical variance over the image to
standardize the images.
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does not have a default setting for the 3dClustSim function,
but a threshold of p = 0.005 seems to be the most common
option (used in 40% of the studies), followed by 25% for p =
0.001 and 15% for p = 0.01.

The amount of smoothing has a rather large impact on the
degree of false positives, especially for FSL OLS. The results
from the permutation test, on the other hand, do not depend on
this parameter. The original fMRI data has an intrinsic SACF,
which is mixed with the SACF of the smoothing kernel. The
combined SACF will more closely resemble a squared ex-
ponential for high levels of smoothing, simply because the
smoothing operation forces the data to have a more Gaussian
SACF. The permutation test does not assume a specific form
of the SACF, and therefore performs well for any degree of
smoothing. It should be stressed that AFNI uses 4 mm as the
default amount of smoothing, while FSL uses 5 mm and SPM
uses 8 mm. Both FSL and AFNI OLS show interaction be-
tween the amount of smoothing and the fMRI data. For all
software packages, the amount of smoothing has a larger ef-
fect on the block based activity paradigms, compared to the
event related ones. These two effects are consistent with our
previous work [16]. SPM, FSL OLS and AFNI also show
interaction between the amount of smoothing and the cluster
defining threshold.

Just as for our previous study [16], the used (pretended)
activity paradigm significantly affects the degree of false pos-
itives. This was unexpected, but it means that problems that
arise due to temporally correlated noise actually propagate
from the single subject analysis to the group analysis. SPM,
FSL and AFNI 3dMEMA show interaction between the fMRI
data and the activity paradigm. This can be explained by the
fact that the Beijing data sets were collected with a repeti-
tion time of 2 seconds, while the Cambridge data sets were
collected with a repetition time of 3 seconds. The temporal
auto correlation between two consecutive volumes increases
with the sampling rate, and in our previous study about single
subject fMRI analysis [16], the sampling rate was found to
be the most important factor for the degree of false positives.
Block based designs are more sensitive to temporal auto cor-
relations resembling power spectra with an 1/f appearance (f
being frequency), as their power spectra are concentrated at
low frequencies. The permutation test is unaffected by the
used activity paradigm for two sample t-tests, but slightly af-
fected for one sample t-tests. An unexpected result is that all
software packages show significant interaction between the
activity paradigm and the number of subjects.

All software packages are significantly affected by the
analysis type; the familywise error rates are generally lower
for a two-sample t-test compared to a one sample t-test. This
effect can be explained by the fact that a test value that rep-
resents a difference (e.g. the difference in brain activation
between two groups) can more easily be approximated with
a normal distribution, compared to a test value that does not
represent a difference. As can be seen in Figures 2, 3, 5 and 6,

the one-sample t-tests are problematic even for the permuta-
tion test. For both FSL OLS and AFNI, there is strong in-
teraction between the analysis type and the fMRI data. A
possible explanation is that the one sample t-tests are more
problematic for fMRI data collected with a higher sampling
rate, as such data have stronger temporal auto correlation be-
tween two consecutive volumes [16].

Both FSL FLAME1 and AFNI OLS give a higher de-
gree of false positives when the number of subjects increases.
This is counter intuitive, as Gaussian random field theory nor-
mally works better for higher degrees of freedom. All soft-
ware packages except SPM also show interaction between the
fMRI data and the number of subjects.

3.5. The future of fMRI

It is not realistic to redo 28,000 fMRI studies, or to re-analyze
all the data. Considering that it is now possible to evaluate
common statistical methods using real fMRI data, the fMRI
community should, in our opinion, focus on validation of ex-
isting methods (rather than developing new methods based
on questionable assumptions). A plethora of excellent meth-
ods are available in the statistics field, but are seldom used in
the neuroimaging community. A non-parametric permutation
test, for example, is based on a small number of assumptions,
and has here been proven to yield more accurate results than
parametric methods. The main drawback of a permutation
test is the increase in computational complexity, as the group
analysis needs to be repeated 1,000 - 10,000 times. The in-
crease in processing time is no longer a problem; an ordinary
desktop computer can run a permutation test for neuroimag-
ing data in less than a minute [28, 41]. A single desktop com-
puter, with a powerful graphics card, was used in this study
to run all the 384,000 permutation tests (with 1,000 permuta-
tions each) in about 15 days (the processing time would be 10
- 30 years if the function randomise in FSL was used instead).

In addition to unreliable statistical methods, the neu-
roimaging field also suffers from studies having low sta-
tistical power [42, 43]. One possible way to increase the
statistical power is to use locally multivariate statistical meth-
ods [44, 45, 46, 47, 48], which do not analyze the data one
voxel at a time. Multivariate statistical methods can, how-
ever, result in more complicated null distributions, making
it harder to obtain p-values. More advanced clustering tech-
niques, such as cluster mass inference [49] or threshold free
cluster enhancement [50], can also result in a higher statistical
power, but it is often hard to derive a theoretical null distribu-
tion. A permutation test can estimate the null distribution of
any test statistic, and can thus increase both the accuracy and
the statistical power of fMRI studies.
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5. METHODS

5.1. Resting state fMRI data

Resting state fMRI data from 396 healthy controls were
downloaded from the homepage of the 1000 functional con-
nectomes project [6]
(http://fcon 1000.projects.nitrc.org/fcpClassic/FcpTable.html).
The Beijing and the Cambridge data sets were selected for
their large sample sizes (198 subjects each) and their narrow
age ranges (21.2 ± 1.8 and 21.0 ± 2.3 years, respectively).
The Beijing data were collected with a repetition time (TR)
of 2 seconds and consist of 225 time points per subject, the
spatial resolution is 3.125 x 3.125 x 3.6 mm3. The Cambridge
data were collected with a TR of 3 seconds and consist of 119
time points per subject, the spatial resolution is 3 x 3 x 3
mm3. For each subject there is one T1-weighted anatomi-
cal volume which can be used for normalization to a brain
template. According to the motion plots from FSL, no sub-
ject moved more than 1 mm in any direction. According to
motion plots from AFNI, one Cambridge subject and three
Beijing subjects moved slightly more than 1 mm. The fMRI
data have not been corrected for geometric distortions, and
no field maps are available for this purpose.

Since all the subjects are healthy and of similar age, it
should be impossible to find any significant brain activity dif-
ferences between two randomly generated subgroups (anal-
yses were performed separately for the Beijing data and the
Cambridge data). The same approach has previously been
used to test the validity of parametric statistics for voxel based
morphometry [14, 21]. As the subjects have not performed
any specific task in the MR scanner, it should also be impos-
sible to find significant group activations. The data can thus
be used to test both two-sample t-tests (group differences) and
one sample t-tests (group activations).

5.1.1. Random group generation

Each random group was created by first applying a random
permutation to a list containing all the 198 subject numbers.
To create two random groups of 20 subjects each, the first 20
permuted subject numbers were put into group 1, and the fol-
lowing 20 permuted subject numbers were put into group 2.
According to the n choose k formula n!

k!(n−k)! it is possible to
create approximately 1.31 ·1042 such random group divisions
(n = 198 and k = 40). The analyses will not be independent,
but the estimate of the familywise false positive rate will still
be unbiased. A total of 1000 random analyses were used to es-
timate the familywise false positive rate, giving a 95% confi-
dence interval of 3.65% - 6.35% for an expected false positive
rate of 5%. To make a fair comparison between the different
software packages, the same 1000 permutations were used for
all software packages and all parameter settings.

5.1.2. Code availability

Parametric group analyses were performed using SPM 8
(http://www.fil.ion.ucl.ac.uk/spm/software/spm8/), FSL 5.0.7
(http://fsl.fmrib.ox.ac.uk/fsldownloads/) and AFNI
(http://afni.nimh.nih.gov/afni/download/afni/releases, com-
piled August 13 2014, version 2011 12 21 1014). FSL can
perform non-parametric group analyses using the function
randomise, but we here used our BROCCOLI software [28]
(https://github.com/wanderine/BROCCOLI) to lower the pro-
cessing time. All the processing scripts are freely available
(https://github.com/wanderine/ParametricMultisubjectfMRI)
to show all the processing settings and to facilitate replication
of the results. Since all the software packages and all the
fMRI data are also freely available, anyone can replicate the
results in this paper.

5.1.3. First level analyses

A first processing script was used for each software pack-
age to perform first level analyses for each subject, resulting
in brain activation maps in a standard brain space (Montreal
Neurological Institute (MNI) for SPM and FSL, and Talairach
for AFNI). All first level analyses involved normalization to
a brain template, motion correction and different amounts of
smoothing (4, 6, 8 and 10 mm full width at half maximum).
Slice timing correction was not performed, as the slice timing
information is not available in the fMRI data sets. A general
linear model (GLM) was finally applied to the preprocessed
fMRI data, using different regressors for activity (B1, B2, E1,
E2). The estimated head motion parameters were used as ad-
ditional regressors in the design matrix, for all packages, to
further reduce effects of head motion.

First level analyses were for SPM performed using a Mat-
lab batch script, mainly created using the SPM manual. The
spatial normalization was done as a two step procedure, where
the mean fMRI volume was first aligned to the anatomical
volume (using the function ’Coregister’ with default settings).
The anatomical volume was aligned to MNI space using the
function ’Segment’ (with default settings), and the two trans-
forms were finally combined to transform the fMRI data to
MNI space at 2 mm isotropic resolution (using the function
’Normalise: Write’). Spatial smoothing was finally applied
to the spatially normalized fMRI data. The first level models
were then fit in the atlas space, i.e. not in the subject space.

For FSL, first level analyses were setup through the
FEAT GUI. The spatial normalization to the brain tem-
plate (MNI152 T1 2mm brain.nii.gz) was performed as a
two step linear registration using the function FLIRT (which
is the default option). One fMRI volume was aligned to the
anatomical volume using the BBR (boundary based regis-
tration) option in FLIRT (default). The anatomical volume
was aligned to MNI space using a linear registration with
12 degrees of freedom (default), and the two transforms were
finally combined. The first level models were fit in the subject
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space (after spatial smoothing), and the contrasts and their
variances were then transformed to the atlas space.

First level analyses in AFNI were performed using the
standardized processing script afni proc.py, which creates a
tcsh script which contains all the calls to different AFNI func-
tions. The spatial normalization was performed as a two step
procedure. One fMRI volume was first linearly aligned to the
anatomical volume, using the script align epi anat.py. The
anatomical volume was then linearly aligned to the brain tem-
plate (TT N27+tlrc) using the script @auto tlrc. The transfor-
mations from the spatial normalization and the motion correc-
tion were finally applied using a single interpolation, result-
ing in normalized fMRI data in an isotropic resolution of 3
mm. Spatial smoothing was applied to the spatially normal-
ized fMRI data, and the first level models were then fit in the
atlas space (i.e. not in the subject space).

Default drift modelling or highpass filtering options were
used in each of SPM, FSL and AFNI. A discrete cosine trans-
form with cutoff of 128 seconds was used for SPM, while
highpass filters with different cutoffs where used for FSL (20
seconds for activity paradigm B1, 60 seconds for B2 and 100
seconds for E1 and E2), matching the defaults used by the
FEAT GUI, and AFNI’s Legende polynomial order is 4 and
3 for the Beijing and the Cambridge data, respectively (based
on total scan duration). Temporal correlations were further
corrected for with a global AR(1) model in SPM, an arbitrary
temporal auto correlation function regularized with a Tukey
taper and adaptive spatial smoothing in FSL and a voxel-wise
ARMA(1,1) model in AFNI.

5.1.4. Group analyses

A second processing script was used for each software pack-
age to perform random effect group analyses, using the results
from the first level analyses. For SPM, group analyses were
only performed with the resulting beta weights from the first
level analyses, using ordinary least squares (OLS) regression
over subjects. For FSL, group analyses were performed both
using FLAME1 (which is the default option) and OLS. The
FLAME1 function uses both the beta weight and the corre-
sponding variance of each subject, subsequently estimating
a between subject variance. For AFNI, group analyses were
performed using the functions 3dttest++ (OLS, using beta es-
timates from the function 3dDeconvolve which assumes inde-
pendent errors) and 3dMEMA (which is similar to FLAME1
in FSL, using beta and variance estimates from the function
3dREMLfit which uses a voxel-wise ARMA(1,1) model of
the errors).

For the non-parametric analyses in BROCCOLI, first level
results from FSL were used and OLS regression was per-
formed in each permutation. The largest test value across
the entire brain was saved in each permutation, to empirically
form the null distribution of the maximum test statistic (which
is required to correct for multiple comparisons). For cluster-

wise inference, the cluster defining threshold was first applied
and the size of the largest cluster was then saved in each per-
mutation. A permutation test cannot be used for testing group
activations (one sample t-tests), as the mean brain activity is
invariant to permutations of the subjects. An alternative is
to instead use random sign flipping of the subjects, justified
by an assumption of symmetrically distributed errors, which
is the solution that FSL and BROCCOLI use for one sample
t-tests. Each non-parametric group analysis was performed
using 1000 permutations or sign flips, giving a total of 192
million permutations and 192 million sign flips for all group
analyses (hence the need to lower the processing time).

Voxel-wise FWE-corrected p-values from SPM and FSL
were obtained based on their respective implementations of
random field theory, while AFNI FWE p-values were ob-
tained with a Bonferroni correction for the number of voxels
(AFNI does not provide any specific program for voxel-wise
FWE p-values). For the non-parametric analyses, FWE-
corrected p-values were calculated with the empirical null
distribution of the voxel-wise maximum statistic, computed
as the proportion of the null distribution being larger than a
particular statistic value.

Cluster-wise FWE-corrected p-values from SPM and FSL
were likewise obtained based on their implementations of ran-
dom field theory. AFNI estimates FWE p-values with a sim-
ulation based procedure, 3dClustSim. SPM and FSL estimate
smoothness from the residuals of the group level analysis
(used for both voxel-wise and cluster-wise inference), while
AFNI uses the average of the first level analyses’ smoothness
estimates. For the non-parametric analyses, FWE-corrected
p-values were calculated as the proportion of cluster sizes in
the empirically estimated null distribution being larger than
each cluster in the group difference map or group activation
map.

Each group analysis was considered to give a significant
result if any cluster or voxel had a FWE-corrected p-value
p < 0.05.

5.2. Task based fMRI data

Task based fMRI data were downloaded from the homepage
of the OpenfMRI project [9] (http://openfmri.org), to inves-
tigate how cluster based p-values differ between parametric
and non-parametric group analyses. Each task dataset con-
tains fMRI data, anatomical data and timing information for
each subject. The data sets were only analyzed with FSL,
using 5 mm of smoothing (the default option). Motion re-
gressors were used in all cases, to further suppress effects of
head motion. Group analyses were performed using the para-
metric OLS option (i.e. not the default FLAME1 option) and
the non-parametric randomise function.
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5.2.1. Rhyme judgment

The rhyme judgment dataset is available at
http://openfmri.org/dataset/ds000003. The 13 subjects were
presented with pairs of either words or pseudowords, and
made rhyming judgments for each pair. The fMRI data were
collected with a repetition time of 2 seconds and consist of
160 time points per subject, the spatial resolution is 3.125
x 3.125 x 4 mm3. The data were analyzed with two regres-
sors; one for words and one for pseudo words. A total of
four contrasts were applied; words, pseudowords, words -
pseudowords, pseudowords - words. For a cluster defining
threshold of p = 0.01, a t-threshold of 2.65 was used. For a
cluster defining threshold of p = 0.001, a t-threshold of 3.95
was used.

5.2.2. Mixed-gambles task

The mixed-gambles task dataset is available at
http://openfmri.org/dataset/ds000005. The 16 subjects were
presented with mixed (gain/loss) gambles, and decided
whether they would accept each gamble. No outcomes of
these gambles were presented during scanning, but after
the scan three gambles were selected at random and played
for real money. The fMRI data were collected using a 3 T
Siemens Allegra scanner. A repetition time of 2 seconds was
used and a total of 240 volumes were collected for each run,
the spatial resolution is 3.125 x 3.125 x 4 mm3. The dataset
contains three runs per subject, but only the first run was used
in our analysis. The data were analyzed using four regressors;
task, parametric gain, parametric loss and distance from in-
difference. A total of four contrasts were applied; parametric
gain, - parametric gain, parametric loss, - parametric loss.
For a cluster defining threshold of p = 0.01, a t-threshold of
2.57 was used. For a cluster defining threshold of p = 0.001,
a t-threshold of 3.75 was used.

5.2.3. Living-nonliving decision with plain or mirror-reversed
text

The living-nonliving decision task dataset is available at
http://openfmri.org/dataset/ds000006a. The 14 subjects made
living-nonliving decisions on items presented in either plain
or mirror-reversed text. The fMRI data were collected using a
3 T Siemens Allegra scanner. A repetition time of 2 seconds
was used and a total of 205 volumes were collected for each
run, the spatial resolution is 3.125 x 3.125 x 5 mm3. The
dataset contains six runs per subject, but only the first run
was used in our analysis. The data were analyzed using five
regressors; mirror-switched, mirror-repeat, plain-switched,
plain-repeat and junk. A total of four contrasts were ap-
plied; mirrored versus plain (1,1,-1,-1,0), switched versus
non-switched (1,-1,1,-1,0), switched versus non-switched
mirrored only (1,-1,0,0,0) and switched versus non-switched
plain only (0,0,1,-1,0). For a cluster defining threshold of p =

0.01, a t-threshold of 2.615 was used. For a cluster defining
threshold of p = 0.001, a t-threshold of = 3.87 was used.

5.2.4. Word and object processing

The word and object processing task dataset is available at
http://openfmri.org/dataset/ds000107. The 49 subjects per-
formed a visual one-back task with four categories of items:
written words, objects, scrambled objects and consonant letter
strings. The fMRI data were collected using a 1.5 T Siemens
scanner. A repetition time of 3 seconds was used and a total
of 165 volumes were collected for each run, the spatial resolu-
tion is 3 x 3 x 3 mm3. The dataset contains two runs per sub-
ject, but only the first run was used in our analysis. The data
were analyzed using four regressors; words, objects, scram-
bled objects, consonant strings. A total of six contrasts were
applied; words, objects, scrambled objects, consonant strings,
objects versus scrambled objects (0,1,-1,0) and words versus
consonant strings (1,0,0,-1). For a cluster defining threshold
of p = 0.01, a t-threshold of 2.38 was used. For a cluster defin-
ing threshold of p = 0.001, a t-threshold of 3.28 was used.
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Table 3: Cluster p-values (corrected for multiple comparisons) for FSL OLS and a permutation test, for typical fMRI studies
available on the OpenfMRI homepage. A cluster defining threshold of p = 0.01 (z = 2.3) was used. Note that the resolution
of the permutation p-values is 0.0002, since 5000 permutations (or sign flips) were used. A star denotes that the parametric
p-value is below 0.2, while the non-parametric p-value is not.

OpenfMRI data set Subjects Cluster size (voxels) FSL OLS p-value Perm OLS p-value
Rhyme judgment, contrast 1 13 53877 0 0.0002
Rhyme judgment, contrast 2 13 27484 0 0.0002

14682 1.37 · 10−40 0.002
3467 1.16 · 10−14 0.024

Rhyme judgment, contrast 3 13 799 4.8 · 10−5 0.097
408 0.0103 0.219 *

Rhyme judgment, contrast 4 13 No surviving clusters
Mixed gambles, contrast 1 16 13284 1.36 · 10−36 0.005

440 0.0152 0.202 *
Mixed gambles, contrast 2 16 No surviving clusters
Mixed gambles, contrast 3 16 No surviving clusters
Mixed gambles, contrast 4 16 655 0.00888 0.118

Living-nonliving decision, contrast 1 14 8612 3.46 · 10−33 0.001
7577 2.37 · 10−30 0.002
5920 1.6 · 10−25 0.003
1439 4.88 · 10−9 0.035
601 0.000213 0.116

Living-nonliving decision, contrast 2 14 751 2.75 · 10−5 0.08
669 8.71 · 10−5 0.096
546 0.000541 0.128

Living-nonliving decision, contrast 3 14 396 0.00889 0.172
323 0.0302 0.207 *

Living-nonliving decision, contrast 4 14 No surviving clusters
Word and object processing, contrast 1 49 7397 2.3 · 10−32 0.001

6586 7.57 · 10−30 0.001
6232 1.02 · 10−28 0.002
2834 2.11 · 10−16 0.01
486 0.00044 0.139
288 0.0182 0.249 *

Word and object processing, contrast 2 49 7062 9.77 · 10−30 0.001
6158 5.08 · 10−27 0.002
5529 4.73 · 10−25 0.003
1853 2.27 · 10−11 0.025
1523 8.3 · 10−10 0.035
1465 1.6 · 10−9 0.037
1382 4.18 · 10−9 0.04
437 0.00174 0.159
409 0.00283 0.173

Word and object processing, contrast 3 49 42205 0 0.0002
998 1.79 · 10−7 0.054

Word and object processing, contrast 4 49 32404 0 0.0002
12837 2.8 · 10−45 0.001

280 0.0287 0.248 *
278 0.0299 0.251 *

Word and object processing, contrast 5 49 2118 3.05 · 10−14 0.017
881 2.98 · 10−7 0.051
395 0.00115 0.146
340 0.00354 0.18
255 0.0226 0.253 *
253 0.0237 0.258 *
222 0.0486 0.297 *

Word and object processing, contrast 6 49 27767 0 0.0002
6183 9.65 · 10−29 0.005
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Table 4: Cluster p-values (corrected for multiple comparisons) for FSL OLS and a permutation test, for typical fMRI studies
available on the OpenfMRI homepage. A cluster defining threshold of p = 0.001 (z = 3.1) was used. Note that the resolution
of the permutation p-values is 0.0002, since 5000 permutations (or sign flips) were used. A star denotes that the parametric
p-value is below 0.05, while the non-parametric p-value is not.

OpenfMRI data set Subjects Cluster size (voxels) FSL OLS p-value Perm OLS p-value
Rhyme judgment, contrast 1 13 13877 0 0.0002

4859 1.18 · 10−38 0.001
2273 5.44 · 10−23 0.002
2039 2.49 · 10−21 0.002
1081 1.04 · 10−13 0.005
473 1.19 · 10−7 0.008
306 1.78 · 10−5 0.011
133 0.00806 0.038
122 0.0127 0.042
99 0.0347 0.055 *

Rhyme judgment, contrast 2 13 14470 0 0.0002
3074 5.43 · 10−27 0.001
1868 3.7 · 10−19 0.002
1558 6.83 · 10−17 0.002
874 2.95 · 10−11 0.004
422 1.19 · 10−6 0.008
255 0.000153 0.014
96 0.0498 0.06 *

Rhyme judgment, contrast 3 13 No surviving clusters
Rhyme judgment, contrast 4 13 No surviving clusters
Mixed gambles, contrast 1 16 766 7.01 · 10−10 0.001

120 0.0237 0.053 *
Mixed gambles, contrast 2 16 No surviving clusters
Mixed gambles, contrast 3 16 No surviving clusters
Mixed gambles, contrast 4 16 No surviving clusters

Living-nonliving decision, contrast 1 14 3310 1.69 · 10−33 0.0002
1901 6.95 · 10−23 0.0002
761 4.8 · 10−12 0.001
569 8.96 · 10−10 0.002
417 5.96 · 10−8 0.002
187 0.000326 0.013
109 0.0109 0.038
96 0.021 0.047
85 0.0373 0.06 *
84 0.0394 0.061 *

Living-nonliving decision, contrast 2 14 90 0.0301 0.046
Living-nonliving decision, contrast 3 14 No surviving clusters
Living-nonliving decision, contrast 4 14 No surviving clusters
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Table 5: Cluster p-values (corrected for multiple comparisons) for FSL OLS and a permutation test, for typical fMRI studies
available on the OpenfMRI homepage. A cluster defining threshold of p = 0.001 (z = 3.1) was used. Note that the resolution
of the permutation p-values is 0.0002, since 5000 permutations (or sign flips) were used. A star denotes that the parametric
p-value is below 0.05, while the non-parametric p-value is not.

OpenfMRI data set Subjects Cluster size (voxels) FSL OLS p-value Perm OLS p-value
Word and object processing, contrast 1 49 4644 1.4 · 10−45 0.0002

4017 2.35 · 10−41 0.0002
2615 7.21 · 10−31 0.0002
828 6.38 · 10−14 0.001
765 3.64 · 10−13 0.001
543 2.57 · 10−10 0.003
306 8.34 · 10−7 0.006
292 1.49 · 10−6 0.006
176 0.000187 0.017

Word and object processing, contrast 2 49 5000 1.4 · 10−45 0.0002
3902 1.61 · 10−38 0.0002
1540 2.22 · 10−20 0.0002
1199 3.92 · 10−17 0.0002
1035 1.84 · 10−15 0.0002
989 5.6 · 10−15 0.001
759 1.96 · 10−12 0.001
699 9.92 · 10−12 0.001
497 3.42 · 10−9 0.003
413 5.96 · 10−8 0.004
133 0.00222 0.029
95 0.0149 0.053 *

Word and object processing, contrast 3 49 27735 0 0.0002
1312 2.62 · 10−19 0.001
1264 8.15 · 10−19 0.001
789 1.57 · 10−13 0.002
525 3.99 · 10−10 0.004
415 1.53 · 10−8 0.005
209 4.05 · 10−5 0.013
143 0.000845 0.024

Word and object processing, contrast 4 49 24890 0 0.0002
3525 2.79 · 10−36 0.0002
1678 7.98 · 10−22 0.0002
1492 4.01 · 10−20 0.001
996 3.42 · 10−15 0.002
845 1.55 · 10−13 0.003
346 4.17 · 10−7 0.008
112 0.00582 0.042
107 0.00751 0.044
106 0.00791 0.044
75 0.0425 0.074 *

Word and object processing, contrast 5 49 373 2.03 · 10−8 0.005
282 7.75 · 10−7 0.006
109 0.00302 0.033
98 0.00574 0.04
92 0.00821 0.044
78 0.0195 0.06 *

Word and object processing, contrast 6 49 11134 0 0.0002
3466 1.21 · 10−37 0.001
1630 1.87 · 10−22 0.001
609 2.86 · 10−11 0.003
475 1.98 · 10−9 0.004
270 3.16 · 10−6 0.009
132 0.00145 0.025
111 0.00433 0.035
92 0.0123 0.048
89 0.0146 0.051 *
76 0.0313 0.067 *
75 0.0332 0.069 *
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